3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы муфты VVTI

Принцип работы муфты VVTI

Муфта VVTI позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это стало возможно благодаря повороту впускного распределительного вала относительно ведущей звездочки в диапазоне 40 ° (угол поворота коленчатого вала). Для регулировки поворота распредвала используется электродвигатель, который меняет угол положения распределительного вала в зависимости от температуры, оборотов и давления масла в двигателе. Угол поворота распредвала выпускных клапанов относительно ведущей звездочки достигает диапазона 35 °. Привод начинает работать с момента запуска двигателя и устанавливает распредвал в оптимальное положение для лёгкого запуска.

Сроки привода (серия UR). 1 — двигатель VVT-iE, 2 — соленоид управления VVT-i, 3 — датчик положения коленчатого вала, 4 — датчик положения распределительного вала (впуск), 5 — датчик положения распределительного вала (выпускной), 6 — датчик температуры воды, 7 — датчик положения распределительного вала

Привод VVTI. 1 — двигатель, 2 — крышка (статорная шестерня), 3 — ротор, 4 — ведомая шестерня, 5 — спиральная пластина, 6 — рычаги, 7 — опора, 8 — корпус (звездочка), 9 — впускной распределительный вал.

Главная цепь привода ГРМ приводит в движение впускной распределительный вал, а затем по короткой соединительной цепи приводной распредвал тоже приходит в движение.
Привод VVTI состоит из рычажного механизма и циклоидального редуктора. Рычажный механизм состоит из корпуса (соединен со звездочкой ГРМ), держателя (соединен с распределительным валом) и соединяющих их спиральной пластины и рычагов.

Циклоидный редуктор муфты VVTI состоит из крышки (с редуктором статора), ротора (соединенного с электродвигателем) и ведомой шестерни (которая имеет на 1 зубец больше, чем шестерня статора), соединенной с ротором. Когда вращения коленвала двигателя увеличивается на 1000 оборотов, ведомая шестерня смещается на 1 зуб.

Спиральная пластина, соединенная с ведомой шестерней, приводится в действие через редуктор. Рычаги передают вращение спиральной пластины на держатель, распределительный вал и муфту VVTI.

Система VVTI состоит из электродвигателя постоянного тока, который не имеет щёток, блока управления EDU и датчика Холла. Блок управления EDU служит посредником между ECM и электродвигателем, контролируя скорость и направление вращения.

VVTI мотор. 1 — ЭДУ, 2 — электродвигатель, 3 — датчик Холла.

Регулировка фаз газораспределения основана на разнице скоростей между двигателем и распределительным валом. В режиме удержания скорость двигателя и распредвала равна. В режиме опережения двигатель вращается быстрее, чем распределительный вал. В режиме замедления наоборот медленнее или в обратную сторону.

Режимы работы двигателя.

По сигналу ECM двигатель муфты VVTI начинает вращаться быстрее, чем распределительный вал. Спиральная пластина поворачивается по часовой стрелке через редуктор. Рычаги, вставленные в спиральные канавки, перемещаются к центральной оси распределительного вала и вращают его с ускорением по отношению к коленчатому валу.

По сигналу ECM двигатель вращается ниже, чем распределительный вал. Спиральная пластина поворачивается против часовой стрелки через редуктор. Рычаги, вставленные в спиральные канавки, сдвигаются от центральной оси распределительного вала и вращают распределительный вал по отношению к коленчатому валу с замедлением.

После достижения заданного момента коленчатый вал двигателя вращается с той же скоростью, что и распределительный вал. Рычажный механизм фиксируется и удерживает фазы газораспределения.

Муфта VVTI с лопастным ротором устанавливается на распредвал выпускных клапанов. Когда двигатель заглушен, стопорный штифт удерживает ротор, сдвинутым до упора вперёд для нормального запуска.
Вспомогательный пружинный механизм служит для возврата ротора и надежной работы замка после выключения двигателя.

Привод VVTI. 1 — корпус, 2 — ротор, 3 — стопорный штифт, 4 — звездочка, 5 — распределительный вал, 6 — вспомогательная пружина. а — останов, б — работа, в — давление масла.

Контроллер ЭСУД управляет потоком масла в камерах муфты VVTI с помощью соленоида, основываясь на сигналах датчиков положения распределительного вала. На заглушенном двигателе золотник клапана перемещается пружиной на максимальный угол наклона.

a — пружина, b — втулка, c — золотник клапана, d — к приводу (передняя камера), e — к приводу (обратная камера), f — слив, g — давление масла, h — катушка, j — поршень.

ЭСУД переключает соленоид в положение опережения и перемещает золотник регулирующего клапана. Моторное масло под давлением подается в ротор в камеру опережения, поворачивая его вместе с распределительным валом в направлении опережения.

ЭСУД так же переключает соленоид в положение запаздывания и перемещает золотник регулирующего клапана в противоположную сторону. Моторное масло под давлением подается к ротору в камеру замедления, поворачивая его вместе с распределительным валом в направлении замедления.

Читайте так же:
Вентилятор регулировать обороты диммером

Контроллер ЭСУД рассчитывает целевой угол в соответствии с параметрами работы двигателя и после достижения заданного положения переключает регулирующий клапан в нейтральное положение до следующего изменения внешних условий, удерживая масло в контуре.

Достаточно часто проблемы и неисправности муфты VVTI связаны с загрязнением её компонентов. Эффективный средством, помогающем решить эту проблему является промывка масляной системы BG 109. В 8-ми из 10 случаев она помогает устранить неисправность без разбора.

Устройство и принцип работы системы CVVT

Современное законодательство в области экологии заставляет автопроизводителей конструировать более совершенные двигатели, повышать их эффективность и снижать выбросы вредных веществ в отработанных газах. Конструкторы учатся управлять процессами, которые ранее принимались с компромиссными усредненными параметрами. Одной из таких разработок является система изменения фаз газораспределения (CVVT). В этой статье мы не будет подробно описывать про фазы газораспределения, с этой информацией можно ознакомиться здесь.

Устройство системы CVVT

CVVT (Continuous Variable Valve Timing) – это система непрерывного регулирования фаз газораспределения двигателя, обеспечивающая более эффективное наполнение цилиндров свежим зарядом. Это достигается за счёт смещения момента открытия и закрытия впускного клапана.

shema-cvvt

Система включает в себя гидравлический контур, состоящий из:

  • Управляющего клапана-соленоида.
  • Фильтра системы VVT.
  • Исполнительного механизма (гидравлической муфты CVVT).

Все компоненты системы устанавливаются в головке блока цилиндров двигателя. Фильтр системы VVT подлежит периодической чистке или замене.

Гидравлические муфты CVVT могут быть установлены как на впускном, так и на обоих валах ДВС.

В случае установки фазовращателей на впускном и выпускном распределительных валах эта система газораспределения будет называться DVVT (Dual Variable Valve Timing).

komponenty-cvvt

К дополнительным элементам системы также относятся датчики:

  • Положения и частоты оборотов коленчатого вала.
  • Положения распределительного вала.

Данные элементы подают сигнал на ЭБУ двигателя (блок управления). Последний обрабатывает информацию и формирует сигнал на электромагнитный клапан, регулирующий подачу масла в муфту CVVT.

Муфта CVVT

Гидравлическая муфта (фазовращатель) имеет звёздочку на корпусе. Она приводится в движение ремнем или цепью привода ГРМ. Распределительный вал жестко соединен с ротором фазовращателя. Между ротором и корпусом муфты расположены масляные камеры. За счёт давления масла, создаваемого масляным насосом возможно смещение ротора и корпуса между собой.

Муфта состоит из:

  • ротора;
  • статора;
  • стопорного штифта.

Стопорный штифт необходим для работы фазовращателей в аварийном режиме. Например, при понижении давления масла. Он выталкивается вперед, что позволяет замкнуть корпус и ротор гидравлической муфты в среднем положении.

mufta

Как работает управляющий клапан-соленоид VVT

Данный механизм служит для регулирования подачи масла на задержку и опережение открытия клапанов. Устройство состоит из следующих элементов:

  • Плунжер.
  • Разъём.
  • Пружина.
  • Корпус.
  • Золотник.
  • Отверстия для подвода масла, подачи и слива.
  • Обмотка.

ЭБУ двигателя формирует сигнал, после чего электромагнит перемещает золотник через плунжер. Это позволяет перепускать масло в разном направлении.

Принцип работы

Принцип работы системы заключается в изменении положения распределительных валов относительно шкива коленчатого вала.

Система имеет два направления работы:

  • Опережение открытия клапанов.
  • Запаздывание открытия клапанов.

Опережение

Масляный насос при работе ДВС создает давление, которое подается на электромагнитный клапан CVVT. ЭБУ за счёт широтно-импульсной модуляции (ШИМ) управляет положением клапана VVT. Когда необходимо отрегулировать исполнительный механизм на максимальный угол опережения, клапан перемещается и открывает масляный канал к камере опережения гидромуфты CVVT. Из камеры запаздывания жидкость в это же время начинает сливаться. Это позволяет переместить ротор с распределительным валом относительно корпуса в противоположное относительно вращения коленвала направление.

Например, угол положения муфты CVVT на холостых оборотах составляет 8 градусов. И так как угол механического открытия клапана ДВС составляет 5 градусов, фактически он открывается на 13.

Запаздывание

Принцип аналогичен предыдущему, однако клапан-соленоид при максимальном запаздывании открывает масляный канал к камере запаздывания. В это время ротор CVVT перемещаются в сторону направления вращения коленвала.

Логика работы CVVT

Система CVVT работает на всем диапазоне оборотов ДВС. В зависимости от производителя логика работы может отличаться, но в среднем она выглядит примерно так:

  • Холостой ход. Задача системы – выполнить проворачивание впускного вала так, чтобы обеспечить позднее открытие впускных клапанов. Это положение повышает устойчивость работы двигателя.
  • Средние обороты ДВС. Система обеспечивает промежуточное положение распределительного вала, обеспечивая снижение расхода топлива и выброс вредных веществ с отработанными газами.
  • Высокие обороты ДВС. Действие системы направлено на максимальное увеличение мощности. Для этого впускной вал прокручивается так, чтобы обеспечить опережение открытия клапанов. Так, система обеспечивает лучшее наполнение цилиндров, что позволяет улучшить характеристики ДВС.
Читайте так же:
Стенд для регулировки тнвд топливных форсунок

Обслуживание

Так как система включает в себя фильтр, его рекомендуется менять. Регламент замены в среднем – 30 тысяч километров. Возможна также и чистка старого фильтра. Автолюбитель вполне может справиться с этой процедурой самостоятельно. Основной сложностью при этом будет поиск места установки самого фильтра. Большинство конструкторов размещают его в масляной магистрали от насоса до электромагнитного клапана. После демонтажа и аккуратной тщательной очистки фильтра CVVT необходимо провести его осмотр. Главное условие – целостность сетки и корпуса. Нужно помнить, что фильтр довольно хрупкий.

Без сомнения, система CVVT направлена на улучшение характеристик двигателя во всех режимах его работы. За счет наличия системы опережения и запаздывания открытия впускных клапанов двигатель имеет лучшую топливную экономичность и сниженные выбросы вредных веществ. Также она позволяет понизить обороты холостого хода без снижения устойчивости работы. Поэтому данная система используется всеми без исключения ведущими автопроизводителями.

Волшебная муфта

Волшебная муфта

Когда-то много лет назад по случаю помогал знакомому оживить его «девятку» – она почему-то перестала заводиться, после того как владелец уделил ей толику своего внимания. Проблема оказалась тривиальной – владелец, не понимая смысла работы системы ГРМ, поменял ремешок с роликом, нисколько не заботясь о правильном взаимоположении распредвала и коленвала.

С тех пор минули десятилетия, системы и механизмы совершенствовались, однако до сих пор и, что характерно, очень часто приходится сталкиваться с аналогичной ситуацией, когда ремонтники рассматривают систему ГРМ не более как набор деталей: ролики и ремень.

Так что же это за система такая – ГРМ, и как ее надо рассматривать правильно?

Где порылась собака

ГРМ (газораспределительный механизм), как следует из учебника 8-го класса (профильное обучение), – механизм (система) своевременного распределения впуска горючей смеси и выпуска отработавших газов в цилиндрах двигателя внутреннего сгорания.

О как оно, оказывается! Тут тебе и газы, и смесь, но при чем же тогда ролики?

Но продолжаем штудировать вышеуказанный учебник: «. осуществляется путем… открытия и закрытия впускных и выпускных клапанов (в четырехтактных двигателях), имеющих привод от распределительного вала (распредвала) и кулачкового механизма. Распредвал имеет жесткую синхронизацию вращения с коленвалом, реализованную с помощью шестеренчатой, зубчатоременной или цепной передачи».

Так вот оно где «собака порылась»! Оказывается, «ролик с ремнем» – это всего лишь средство синхронизации распредвала с коленвалом. Но почему внимание уделяется только ролику и ремню? Разве система ГРМ будет нормально работать при выходе из строя водяной помпы, которая также может «сидеть» на этом ремне (фото 1)? Конечно, не будет работать! Но почему же тогда только «ролик с ремнем»?

Фото 1 — запчасти системы ГРМ: помпа (1), натяжной (2) и «паразитный» (обводной) (3) роликиФото 1 — запчасти системы ГРМ: помпа (1), натяжной (2) и «паразитный» (обводной) (3) ролики

Сладкая парочка

Ответ на этот вопрос придется искать в игнорировании всего сложного или, другими словами, – в упрощении. Понятно, что «ролик с ремнем» обладают меньшим ресурсом, чем шестерня распредвала, которую можно считать рядом с ними чуть ли не вечной деталью, и тогда вполне понятно изначальное обозначение «ролика с ремнем» как самого слабого места системы.

Все логично, но не хватает важного дополнения – «но не единственного!». И шестерня может сломаться, и уж тем более – помпа, и все это, безусловно, должен иметь в виду специалист, взявшийся работать с этой системой. В обязательном порядке ревизии должны быть подвергнуты все доступные детали системы, а после завершения дефектовки уже принимается решение о проведении необходимых работ по этой системе.

Но на практике довольно часто бывает, что менять действительно нужно только «ролик с ремнем». И если не относиться каждый раз внимательно к «мелочам», то получим уничижение целой системы до пресловутой «сладкой парочки» деталей.

Читайте так же:
Двигатель k9k регулировка клапанов

Автолюбителям подобное можно простить, поскольку они не обязаны быть обремененными глубокими знаниями по этой теме – естественно, что им просто необходимо сделать тут какое-то упрощение, чтобы хоть как-то запомнить, про что вообще идет речь. Но такой примитивизм совершенно непростителен для специалистов.

Так что же получается, мы нашли виновника в лице нерадивого специалиста? Ан нет, не все так просто.

Предвидеть всегда лучше

Что же должен делать специалист, если у него заказывают лишь строго обозначенный объем работ, то есть не «проверить работу и исправность системы ГРМ», а только «поменять ролик с ремнем»? Правильно, он может только эту работу и сделать, ибо любая его самостоятельная попытка увеличения объема работ легко может быть классифицирована юристами как «навязывание платных услуг». А делать что-либо бесплатно – это тоже «не наш метод». Поэтому единственно, что в таком случае обязательно надо сделать, так это довести до сведения клиента информацию о недостатках, выявленных в ходе проведения работ.

Но и специалисты тут оказываются нередко не «безгрешными». Всего знать невозможно, и зачастую сервисы, которые берутся обслуживать все – от «Жигулей» до «Мерседесов», просто не имеют нужной глубины познаний по конкретной модели или марке автомобиля. И тогда необходимый объем работ просто не предлагается клиенту в силу низкой квалификации исполнителя.

Принципиально все системы ГРМ одинаковы. Но при этом они – разные. К примеру, в двигателе 5254Т2 (Volvo) система ГРМ реализована иначе (фото 1 и 2), нежели на упомянутой в самом начале нашего рассказа ВАЗовской «девятке». Распредвалов в вольвовском моторе два, и оба имеют возможность изменения своего угла положения как относительно коленвала, так и относительно друг друга – такое изменение фаз ГРМ необходимо для достижения высоких мощностных, экономических и экологических характеристик двигателя. Для их реализации вместо простой шестерни распредвала используется специальная муфта (фото 3), управление которой и позволяет добиться требуемого результата. И в отличие от шестерни, муфта не такая уж и вечная деталь – ее ресурс вполне приближен к «ролику с ремнем».

Фото 2 — муфты на двигателе 5254T2 (Volvo)Фото 2 — муфты на двигателе 5254T2 (Volvo) Фото 3 — муфты как они естьФото 3 — муфты как они есть

Конечно, когда ситуация критическая, и «машинные мозги» уже заполнили экран бортового компьютера предупреждениями о неисправности муфты, или из под нее обильно хлещет масло, а машина ощутимо потеряла в динамике и мощности, или вообще поршни встретились с клапанами – все понятно, и муфту можно «приговаривать» к замене.

Но разве специалист нужен не для того, чтобы предотвратить подобные поломки заранее? А чтобы иметь возможность что-то предотвратить, нужно хорошо понимать сам процесс развития ситуации, а также устройство и принцип работы узла.

Для успешного выполнения работ требуется также опыт по установке подобных деталей и спецоборудование, поскольку при отсутствии необходимой (и достаточно высокой) точности установки детали компьютер будет фиксировать ошибки по работе узла. Причем в определенных случаях эти ошибки могут появляться не сразу, а по прошествии немалого количества времени.

Как это делается

Для объяснения всех хитростей рассмотрим схему работы муфты изменения фаз ГРМ на примере двигателя Volvo В5254Т2, отдельные элементы которой обозначим различными цветами (рис. 1, фото 4 – разобранная муфта).

Фото 4 — разобранная муфтаФото 4 — разобранная муфта

Ремень ГРМ через зубчатую шестерню соединен с внешней частью муфты (синий цвет), которая имеет определенный угол подвижности относительно своей внутренней части (темно-зеленый цвет). Угол этой подвижности задается упором поршня (черный цвет) в края внешней части муфты, а сам поршень перемещается по внутренней части муфты посредством червячного механизма. Поршень приходит в движение, подвергаясь гидравлическому давлению со стороны циркулирующего масла двигателя, которое, в зависимости от положения управляющего клапана (отдельный элемент, показанный на фото 5), может подаваться как во внутреннюю полость муфты (желтый цвет) так и в наружную (фиолетовый цвет). Таким образом, воздействуя с разных сторон на поршень, удается добиться разности положения муфты от конкретного распредвала (светло-зеленый цвет), т.е. получить угол этого распредвала, отличный от другого (при двух распредвалах) и относительно коленвала.

Фото 5 — схема гидравлических каналов клапана управления муфтойФото 5 — схема гидравлических каналов клапана управления муфтой Рис. 1Рис. 1

Читайте так же:
Регулировка стояночного тормоза ока 11113

Наиболее типовой проблемой у муфты является появление течи из-под сальника (красный цвет), призванного герметизировать зазор между шейкой муфты и телом ГБЦ (коричневый цвет). Вызвано это естественным износом трущихся пар внутри муфты, в результате чего появляется люфт внешней части муфты относительно внутренней. В свою очередь, это приводит к тому, что внешняя часть муфты начинает просто разъединяться с сальником. При заводской установке сальника критичное значение люфта составляет около 1 мм.

С учетом вышесказанного становится понятно, что наиболее правильным методом диагностики состояния муфты является замер ее осевого люфта, ну а уж наличие даже незначительного количества масла из-под муфты должно однозначно служить приговором к ее замене (при условии наличия ощутимого люфта муфты).

При замере осевого люфта муфты необходимо понимать, что при нахождении муфты в крайних положениях имеющийся люфт может никак не проявлять себя из-за конструктивных особенностей узла. И тогда может потребоваться перемещение муфты из крайнего положения.

Несмотря на очевидность озвученных «тонкостей», на практике бывает не все так просто. Главная проблема кроется в запчастях, которые теперь имеют меньший ресурс. Конечно, моточасы не имеют четкой привязки к километ­ражу на разных машинах, но раньше по этим муфтам можно было хоть «часы сверять» – в подавляющем большинстве случаев муфты «просились» на замену при 95–105 тыс. км пробега. Сейчас же этот диапазон заметно уменьшился. По моей (опытной) статистике для муфт, поставляемых в запчасти, он составляет в среднем 60–70 тыс. км.

Характер изнашивания муфт теперь стал хитрым – нелинейным, в отличие от того, как это было раньше. Нелинейность износа проявляется в достаточно быстром, иной раз уже после 10 тыс. км пробега, появлении заметного люфта (порядка 0,3–0,4мм), но потом его рост существенно замедляется.

Также при анализе состояния муфты необходимо учитывать и глубину посадки сальника, которая хоть и в небольшом диапазоне, но все-таки могла быть изменена предыдущим установщиком.

В общем, муфта изменения фаз ГРМ – не такая уж сложная вещь, если вооружиться хотя бы элементарным пониманием и подойти к ней с должной аккуратностью. И уж тем более – не волшебная, если есть опыт, который, как известно, «сын ошибок трудных».

Системы изменения фаз ГРМ и основные неисправности

Системы изменения фаз ГРМ и основные неисправности

Газораспределительный механизм (ГРМ) служит для обеспечения своевременной подачи в цилиндры двигателя воздуха или горючей смеси (в зависимости от типа двигателя) и выпуска отработавших газов из цилиндров. Разберемся, зачем же необходимо менять фазы ГРМ.

Для всех режимов работы двигателя есть свои оптимальные значения по продолжительности открытия и закрытия клапанов. Благодаря автоматическому управлению механизмом газораспределения можно увеличить мощность и крутящий момент практически на всех режимах работы двигателя и уменьшить токсичность отработавших газов без применения других конструктивных решений.

Таким образом, система изменения фаз газораспределения служит для их оптимизации при работе двигателя на режимах холостого хода, максимальной мощности и максимального крутящего момента и для обеспечения рециркуляции отработавших газов.

На современных автомобилях применяется система автоматического изменения фаз ГРМ, а также система отключения цилиндров для сокращения расхода топлива и снижения токсичности в режиме неполной нагрузки на двигатель. Рассмотрим основные типы таких систем.

Способы изменения фаз газораспределения можно классифицировать по регулируемым параметрам работы ГРМ:

  • поворот распределительного вала;
  • применение кулачков с разным профилем;
  • изменение высоты подъема клапанов.

Наиболее распространена система, изменяющая фазы посредством поворота распредвала, которая применяется на автомобилях следующих марок:

  • BMW: VANOS (Double VANOS);
  • Toyota: VVT-i (Dual VVT-i), Variable Valve Timing with intelligence;
  • Volkswagen: VVT, Variable Valve Timing;
  • Honda: VTC, Variable Timing Control;
  • Hyundai, KIA, Volvo, General Motors: CVVT, Continuous Variable Valve Timing;
  • Renault: VCP, Variable Cam Phases.

На примере автомобилей VAG (Volkswagen Audi Group) можно рассмотреть распространенную систему изменения фаз ГРМ VVT с гидроуправляемыми муфтами, расположенными по одной на каждом распределительном валу двигателя.

Муфты представляют собой гидравлические устройства, подключенные к системе смазки двигателя. Управление осуществляется блоком управления двигателя на основании данных о частоте вращения коленчатого вала, нагрузке, температуре и других параметров. Масло из системы смазки двигателя поступает через каналы в корпусе механизма газораспределения и в распределительных валах в гидроуправляемые муфты, которые поворачивают распредвалы в соответствии с командами блока управления.

Читайте так же:
Карбюратор робин ex17 регулировка

82.jpg

Существуют и системы изменения фаз ГРМ, работа которых основана на применении кулачков различной формы, благодаря которым достигается ступенчатое изменение продолжительности открытия и высоты подъема клапанов. Такие системы используются на следующих автомобилях:

  • Honda: VTEC, Variable Valve Timing and Lift Electronic Control;
  • Toyota: VVTL-i, Variable Valve Timing and Lift with intelligence;
  • Mitsubishi: MIVEC, Mitsubishi Innovative Valve Timing Electronic Control;
  • Audi: Valvelift System.

Данные системы имеют в основном схожие конструкцию и принцип действия, которые можно рассмотреть на примере VTEC.

83.jpg

Распределительный вал имеет два малых и один большой кулачок на каждые два клапана. В режиме работы двигателя с небольшой частотой вращения коленчатого вала малые кулачки через двигателя с небольшой частотой вращения коленчатого вала малые кулачки через соответствующие рокеры воздействуют на пару впускных клапанов. Большой кулачок перемещает свободное коромысло вхолостую. Клапаны имеют минимальную высоту подъема, фазы ГРМ характеризуются малой продолжительностью.

Система управления с блокирующим механизмом, имеющим гидравлический привод, обеспечивает ступенчатое переключение с одного режима работы на другой при достижении коленвалом двигателя определенной частоты вращения. Рокеры малых и большого кулачков соединяются с помощью стопорного штифта в единое целое, и после этого усилие на впускные клапаны передается от большого кулачка распредвала. Таким образом, увеличивается ход клапанов и фазы газораспределения.

Недостатками такой системы являются ступенчатый переход с одного режима на другой и конструктивная сложность реализации процесса блокировки.

84.jpg

Наиболее совершенная конструкция системы изменения фаз ГРМ на данный момент основана на регулировании высоты подъема клапанов. Первопроходец в этом направлении — компания BMW, предложившая разработку Valvetronic. Аналогичный принцип реализован и в других системах:

  • Toyota: Valvematic;
  • Nissan: VEL, Variable Valve Event and Lift System;
  • FIAT: MultiAir;
  • Peugeot: VTI, Variable Valve and Timing Injection.

85.jpg

Система Valvetronic устанавливается только на впускные клапаны. Изменение хода клапана осуществляется с помощью сложной кинематической схемы. Эксцентриковый вал 9 приводится в движение от электродвигателя 1 через червячную передачу 2. Вращение эксцентрикового вала 9 изменяет положение промежуточного рычага 10, который, в свою очередь, задает определенное движение коромысла 11 и соответствующее ему перемещение клапана 16. Изменение высоты подъема клапана осуществляется непрерывно в зависимости от режимов работы двигателя. Такая система позволяет отказаться от использования дроссельной заслонки на некоторых режимах работы двигателя.

Система изменения фаз ГРМ надежна и обычно не доставляет хлопот владельцам автомобилей. Но предъявляются жесткие требования к качеству и сроку эксплуатации моторного масла, так как управление приводом гидравлическое. Не допускается никаких примесей, инородных частиц, строго должны быть соблюдены требования по вязкости и регламенту замены масла.

Поговорим о некоторых известных неисправностях системы изменения фаз ГРМ. Например, на автомобиле Renault Megane III (выпуск после 2008 года, двигатель K4M/F4R 830 объемом 1,6 литра) часто можно услышать стук со стороны верхней части двигателя после холодного пуска. Самая распространенная причина этого недуга кроется в приводе системы фаз ГРМ, а именно в муфте распределительного вала впускных клапанов. Для устранения неисправности требуется замена привода системы изменения фаз и обязательное обновление программного обеспечения для электронного блока управления двигателем.

На автомобиле Mazda CX-7 (выпуск после 2007 года с двигателем L3 Turbo объемом 2,3 литра) встречается аналогичная неисправность: чрезмерный шум от привода системы изменения фаз ГРМ, особенно при пуске холодного двигателя. Основная причина — неполное включение стопорного штифта привода системы изменения фаз газораспределения. Порядок устранения поломки следующий:

  1. Установить модифицированный привод системы изменения фаз газораспределения.
  2. Заменить моторное масло.
  3. Запустить двигатель, дать ему поработать на холостом ходу минимум 5 минут.
  4. Проверить топливный насос высокого давления на наличие утечек.
  5. Выключить зажигание.
  6. Дождаться снижения температуры охлаждающей жидкости.
  7. Заменить моторное масло и масляный фильтр.

У автомобиля KIA Rio (2005-2011 гг. выпуска, двигатель G4ED объемом 1,6 литра) иногда встречаются неприятные проблемы: неустойчивый холостой ход, ухудшение эксплуатационных характеристик двигателя. Причина аналогична: неисправность привода системы изменения фаз ГРМ, а именно муфты распределительного вала выпускных клапанов. Способ устранения следующий:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector