4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Регулирование — частота — вращение — двигатель — постоянный ток

Регулирование частоты вращения двигателей постоянного тока с последовательным возбуждением осуществляется изменением магнитного потока возбуждения за счет шунтирования обмотки якоря или обмотки полюсов.  [1]

Регулирование частоты вращения двигателей постоянного тока посредством изменения подводимого напряжения требует применения специальных схем, которые рассмотрены в следующей главе.  [3]

Если регулирование частоты вращения двигателя постоянного тока должно выполняться с повышенной точностью, например в реверсивных позиционных электроприводах, применение микропроцессоров может оказаться особенно эффективным. Фактическая частота вращения либо сразу преобразуется в частотнозависимый сигнал ( например, с помощью датчика импульсов), либо измеряется тахогенератором и преобразуется аналого-цифровым преобразователем в цифровой сигнал. Ток якоря измеряется в аналоговой форме и затем преобразуется в цифровой код. С помощью микропроцессора можно рассчитать для каждой длительности импульса среднее значение постоянного тока и скорость нарастания тока в цепи якоря, амплитудные значения тока могут быть записаны в память. В функции этих величин вычисляются управляющие импульсы для преобразователя. Синхронизирующее напряжение получается непосредственно от питающей сети с помощью фильтра или же микропроцессор по заранее составленной таблице, хранящейся в его запоминающем устройстве, вычисляет значения периодического сигнала, напряжение, частота и фаза которого сравниваются с напряжением, частотой и фазой сети. При этом искажения напряжения сети уже не оказывают влияния на работу преобразователя.  [4]

Для регулирования частоты вращения двигателя постоянного тока с параллельным возбуждением малой мощности иногда используется схема, изображенная на рис. 9.47, а.  [5]

Для регулирования частоты вращения двигателей постоянного тока с независимым возбуждением малой мощности иногда используется установка, схема которой изображена на рис. 9.51, а. В этой установке АТ, АТ — автотрансформаторы, служащие для регулирования напряжения, В и Вг — выпрямители для преобразования переменного тока в постоянный.  [6]

Способ регулирования частоты вращения двигателя постоянного тока зависит от того, из какого источника энергии поступает напряжение постоянного тока.  [8]

Способ регулирования частоты вращения двигателя постоянного тока путем изменения подводимого к якорю напряжения обеспечивает широкие пределы регулирования. Этот способ по существу сходен с частотным регулированием в машинах переменного тока, так как закон изменения напряжения и частоты близок к ( / / fconst и регулирование происходит при постоянном потоке. Механический преобразователь частоты — коллектор изменяет частоту переменного тока, протекающего в якоре, пропорционально напряжению, приложенному к обмотке якоря. В этой схеме якорь генератора независимого возбуждения питает двигатель.  [10]

В современных системах регулирования частоты вращения двигателей постоянного тока применяются тиристорные схемы, позволяющие осуществить регулирование частоты вращения в, широких пределах по заданной программе.  [11]

Читайте так же:
Регулировка зажигания на бензопиле чемпион 240

В настоящее время широко применяют импульсный метод регулирования частоты вращения двигателей постоянного тока . При этом на двигатель с помощью импульсного регулятора периодически подают импульсы напряжения определенной частоты.  [13]

На рис. 5 — 4, в приведена схема регулирования частоты вращения двигателя постоянного тока с помощью усилителя.  [15]

Частота вращения двигателя постоянного тока. Способы регулирования частоты вращения.

Регулирование частоты вращения двигателей независимого и параллельного возбуждения.Хорошие регулиро­вочные свойства двигателей по­стоянного тока — одна из основных причин их примене­ния в современном электроприводе, несмотря на сущест­венные недостатки, обусловленные наличием у них щеточно-коллектор­ного узла. Лучшие регулировочные свойства у двигателей независимого и параллельного воз­буждения. Регулирование частоты вращения изменением под­водимого к обмотке якоря напряжения. Как следует из n=(U-Ia*суммаr)/(ce*Ф), с изменением напряжения U частота вращения изменяется. Так как превышение но­минального напря­жения недопустимо, то этот способ позволяет изменять частоты вращения только в сторону уменьшения от номи­нальной. В двигателях мощностью до 100—120 Вт напря­жение, подводимое к обмотке якоря, можно изменять посредством потенциометра потери в котором вследствие небольшой пе­редаваемой мощности неве­лики. Если питание двигателя осуществляется через автономные выпрямители (В1 — в цепи обмотки якоря и В2— в цепи обмотки возбуждения ОВ), то регулировать частоту вращения можно посредством автотрансформатора AT, на выход которого включен выпрямитель В1. При этом напряжение возбуждения остается неизменным. Этот способ регулирования частоты вращения успешно при­меняется при мощности двигателя до 500—600 Вт. Регулирование частоты вращения изменением доба­вочного сопротивления в цепи обмотки якоря. Этот способ регулирования также позволяет изменять частоту вращения только в сторону уменьшения от номи­нальной и осуществляется посредством реостата Rдоб (см. рис. 6.20). Недостатки рассматриваемого спо­соба: значи­тельные потери на нагрев реостата (Ia^2*Rдоб) — с измене­нием сопротивления доб меняется жесткость механиче­ских характеристик двигателя (см. рис. 6.22, a). Регулирование частоты вращения изменением магнит­ного потока возбуждения. Этот способ регулирова­ния весьма экономичен, так как изменение магнитного потока осуществляется реостатом в цепи обмотки возбуждения, ток в которой у рассматриваемых двигателей в несколько раз меньше тока в цепи обмотки якоря. Способ позволяет изменять частоту вращения в сторону увеличения от номинальной. При увеличе­нии сопротивления реостата rрег (см. рис. 6.20) уменьшается ток в обмотке возбужде­ния Iв, а следовательно, и магнитный поток Ф, что вызы­вает возрастание частоты вращения якоря двигателя. вращения может превышать максимальное значение. Недостаток данного способа регулирования состоит в том, что при изменении потока Ф в значительной степени меняется жесткость механических характеристик двигате­ля (см. рис. 6.22, б). Импульсное регулирование частоты вращения. Цепь обмотки якоря двигателя независи­мого возбуждения периодически подключается к ис­точни­ку напряжения ключом К. При замыкании цепи якоря на время t1 к обмотке якоря подводится напря­жение U=Uном, ток нарастает до значения Imax (рис. 6.25, б). При размыкании ключа ток уменьшается, дос­тигая значения Imin, замыкаясь через диод VD. При следующем замыкании ключа К. ток в якоре вновь дос­тигает значения Imax и т. д. Таким образом, к цепи обмотки якоря подводятся импульсы напряжения, ам­плитудное значение которых равно напряжению U источника. Среднее напряжение, прикладываемое к дви­гателю, В, Uср=Ut1/T=gU, где t1—длительность импульса напряжения; Т—время между двумя следующими друг за другом импульсам напряжения (рис. 6.25, б); g=t1/T— коэффициент управления. Ток в обмотке якоря определяется средним значение Iср=0,5(Imax+Imin). Частота вращения двигателя при импульсном регулировании n=(gU-Ia*суммаr)/(ce*Ф). Импульсное регулиро­вание обеспечивает изменение частоты вращения лишь в сторону уменьшения от номинальной. Для снижения пульсаций тока в цепь якоря включают дроссель L. Частота работы ключа составляет 200—400 Гц. На рис. 6.25, в показана одна из возможных схем импульсного регулирования напряжения, где в качеств ключа используют тиристор VS. Включается тиристор (что соответствует замыканию ключа) подачей кратко­временного импульса от генератора импульсов ГИ на управляющий электрод УЭ. Цепь из дросселя L1 и кон­денсатора С, шунтирующая тиристор, служит для выключения последнего в интервале между двумя управ­ляющими импульсами. При включении тиристора конденсатор С перезаряжается по контуру С—VS—L1—С и к тиристору прикладывается напряжение, обратное напряжению сети. Время открытого состояния тиристора (с) определяется параметрами цепи L1С: t=p*sqrt(L1C), где L1 —индуктивность дросселя, Гн; С—емкость кон­денсатора, Ф. Среднее значение напряже­ния Uср, подводимого к обмотке якоря, регулируется изменением частоты следования управляющих импульсов. Частота вращения Д с постоянными магнитами регулируется изменением напряжения на обмотке якоря (реостатом Rдоб или импульсным методом) только в сторону уменьшения от номинального значения. Для из­менения направления вращения якоря (реверса) Д необходимо изменить направление тока в обмотке якоря либо в ОВ. При одновременном изменении тока в обеих обмотках якорь не изменяет направления вращения. В Д с постоянными магнитами реверс осуществляется изменением полярности клемм обмотки якоря.

Читайте так же:
Зазор регулировки клапанов двигатель 2111

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Регулирование частоты вращения якоря тягового двигателя и изменение направления его вращения

Способы регулирования частоты вращения якоря. Из формулы (1) следует, что частота вращения якоря двигателя постоянного тока зависит от питающего напряжения ?/, падения напряжения 1ягя в цепи обмотки якоря и магнитного потока Ф. Поэтому ее можно регулировать тремя способами:

изменением питающего напряжения 11

включением реостата в цепь обмотки якоря;

изменением магнитного потока Ф.

Так как напряжение в контактной сети метрополитена постоянное, то изменить питающее напряжение тяговых двигателей можно их перегруппировкой. Для того чтобы получить минимальную скорость вагона, к каждому из четырех тяговых двигателей подводится минимальное напряжение, что обеспечивается тогда, когда двигатели соединены последовательно (рис. 48, а). При таком соединении напряжение, подводимое к одному двигателю, в 4 раза меньше напряжения в контактном рельсе.

Соединение тяговых двигателей 1-4 в две параллельные группы (рис. 48, б) по два последовательно включенных в каждой условно называют параллельным. В этом случае напряжение, подводимое к каждому двигателю, будет в 2 раза меньше напряжения в контактном рельсе, и частота вращения якоря двигателя увеличится вдвое по сравнению с частотой вращения при последовательном соединении.

При включении реостата напряжение питающей сети распределяется между тяговыми двигателями и реостатом. По мере выведения ступеней реостата увеличивается напряжение на зажимах двигателей и соответственно частота вращения якорей двигателей.

Читайте так же:
Регулировка клапанов рейсер сагита

Такой способ регулирования прост и позволяет плавно изменять частоту вращения в широком диапазоне. Однако при этом возникают большие потери энергии в реостате.

Схемы последовательного (а) и последовательно-параллельного (б) соединения тяговых двигателей

Для регулирования частоты вращения якоря изменением магнитного потока шунтируют обмотки главных полюсов — обмотки возбуждения (рис. 49, а). В этом случае параллельно обмоткам возбуждения включают резистор 7?ш, и через обмотку возбуждения будет протекать только часть тока обмотки якоря (другая часть этого тока в точке О ответвляется в шунтирующий резистор), что приводит к ослаблению возбуждения тягового двигателя и возрастанию частоты вращения его якоря.

Степень ослабления возбуждения зависит от сопротивления шунтирующего резистора. На подвижном составе метрополитена для плавного изменения частоты вращения якоря применяют несколько ступеней ослабления возбуждения.

Рассмотрим пример ослабления возбуждения двумя ступенями (рис. 49, б). При включении только контактора 7 образуется первая ступень, при которой параллельно обмотке возбуждения включаются две последовательно соединенные секции шунтирующего резистора. При включенных контакторах 7 и 2 получают вторую ступень ослабления возбуждения, при которой параллельно обмотке возбуждения включена одна секция шунтирующего резистора (вторая замкнута контактором 2).

Скоростные ходовые характеристики, показанные на рис. 50, соответствуют последовательному (С) и параллельному (77) соединениям тяговых двигателей с различными ступенями ослабления возбуждения. При полном возбуждении (#77) последовательно соединенных тяговых двигателей вагон имеет определенную скорость. Включив первую ступень ослабления возбуждения (ОП1), получают новую возросшую скорость движения. Второй ступени ослабления возбуждения (0772) соответствует еще одна скорость движения вагона при последовательном соединении тяговых двигателей. То же самое можно сделать и при параллельном соединении тяговых двигателей (77).

Если в тяговом режиме для увеличения частоты вращения якоря возбуждение тяговой машины уменьшают, то в тормозном режиме для уменьшения частоты вращения якоря возбуждение увеличивают.

Читайте так же:
Как отрегулировать сцепление в т16

Назначение индуктивного шунта. Обмотка возбуждения тягового двигателя обладает большой индуктивностью, поскольку через ее витки протекает большой ток, а сердечник имеет большую массу. В цепях же с большой индуктивностью при изменении или отключении тока и его последующем включении (например, при отрыве токоприемника от контактного рельса) возникает значительная э. д. с. самоиндукции. Так как э. д. с. направлена против тока и препятствует его протеканию по обмотке возбуждения, то большая часть тока пойдет по шунтирующему резистору, что приведет к нарушению принятого распределения токов 1 и /ш в параллельных ветвях и к недопустимому ослаблению магнитного потока тягового двигателя.

Для того чтобы избежать чрезмерного ослабления магнитного потока тягового двигателя при резком изменении тока, что может привести к возникновению кругового огня на коллекторе, последовательно с шунтирующим резистором включают катушку индуктивности ИШ, называемую индуктивным шунтом (рис. 49, в). Изменение тока в цепи двигателя будет вызывать возникновение э. д. с. самоиндукции как в обмотке возбуждения, так и в индуктивном шунте. При этом индуктивность шунта выбирают близкой к индуктивности обмотки возбуждения, чтобы э.д.с. самоиндукции не нарушала принятого распределения токов 1 и /ш между обмоткой возбуждения и шунтирующей цепью.

Изменение направления вращения якоря. Для изменения направления вращения якоря (реверсирования) двигателя нужно изменить или направление магнитного потока главных полюсов машины, или направление тока в обмотке якоря. Одновременное изменение магнитного потока и тока якоря не приведет к изменению направления вращения, в чем можно убедиться, применив правило левой руки.

Скоростные характеристики тягового двигателя

Для упрощения силовых цепей реверсирование двигателей осуществляют, изменяя направление тока в обмотках якорей (рис. 51, а и б)

Реверсируют тяговые двигатели аппаратами, называемыми реверсорами, в которых в зависимости от задаваемого направления вращения включаются контакторы Вперед или Назад.

Контрольные вопросы 1. Какими способами регулируют частоту вращения якоря тягового двигателя?

2. Каким образом осуществляется ослабление возбуждения двигателя?

3. Какими способами можно менять напряжение на зажимах тягового двигателя?

способ регулирования частоты вращения асинхронного двигателя. Способы регулирования частоты вращения асинхронного двигателя

Вопрос9. Перечислить и объяснить основные способы регулирования частоты вращения асинхронного двигателя.

Ответ9 : Для трехфазного АД возможности регулирования частоты ( в оборотах в минуту) определяются соотношением

Читайте так же:
Прибор регулировки схождения автомобилей

n=60 f / p (1 — S), где

f-частота переменного тока;

p-число пар полюсов.

Следовательно частоту вращения асинхронного двигателя можно регулировать изменяя:

а) частоту f питающей сети. Для этого применяют машинные и полупроводниковые (тиристорные) преобразователи;

б) изменяя число пар полюсов(ступенчатое регулирование).

При p=1;2;3;… n1=3000, 1500, 1000 об / мин.

Габариты и стоимость двигателя возрастают.

в) скольжение можно изменять только в асинхронном двигателе с фазным ротором.

Вопрос10: в чем особенности пускового режима асинхронного двигателя?

Ответ10 : При прямом пуске АД ток потребляемой из сети в 5-8 раз превышает номинальный ток, при этом пусковой момент мал.. Поэтому применяют различные способы уменьшения пускового тока .

1) Уменьшают напряжения питающей сети используя переключение с треугольника на звезду, используя автотрансформаторы.

2) Используют роторы в виде 2-го беличьего колеса. В момент пуска при больших токах суммарное индуктивное сопротивление ротора зависит от скольжения. С увеличением скольжения оно увеличивается, при уменьшении уменьшается. Это позволяет создавать хороший пусковой момент и уменьшать пусковой ток.

Вопрос11: Перечислить и сравнить различные способы пуска асинхронного двигателя с короткозамкнутым ротором.

Ответ11: Пусковые свойства АД определяются следующими величинами:

Пусковым током, начальным пусковым вращающим моментом, плавностью и экономичностью пускового процесса, длительностью пуска.

Способы пуска асинхронного двигателя с короткозамкнутым ротором:

1) Прямой — непосредственное подключение к сети. При этом пусковой ток IП составляет 6÷8 Iном, пусковой момент 1÷2 Мном. Метод применим для двигателей малой и средней мощности <200квт. Частые прямые включения мощного двигателя могут привести к колебаниям энергии в силовой сети, что опасно для нее.

2) Уменьшают напряжение питающей сети используя переключение с треугольника на звезду, Метод применим для двигателей малой и средней мощности <200квт. Уменьшение напряжения на обмотках происходит в √3 раз, а пусковой ток в 3 раза.

**) Уменьшение напряжения на обмотках может уменьшать пусковой момент и он станет меньше требуемого т.е меньше момента нагрузки. Ротор просто не сможет вращаться .

3) Используя регулируемые автотрансформаторы, при этом уменьшение напряжения в √2 раз вызывает уменьшение пускового тока и пускового момента в 2 раза.

4) Включают в каждую фазу по дросселю(реактору). Дроссель ограничивает пусковой ток, но одновременно уменьшается пусковой момент.

5) Используют роторы в виде двойного беличьего колеса. В таком роторе суммарное индуктивное сопротивление 2-х беличьих колес зависит от скольжения. С увеличением скольжения оно увеличивается, при уменьшении уменьшается. Это позволяет создавать хороший пусковой момент и уменьшать пусковой ток.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector